Wednesday, December 2, 2015

`((100),(98))` Find the binomial coefficient.

You need to evaluate the binomial coefficient, using the next formula, such that:


`((n),(k)) = (n!)/(k!(n-k)!)`


You should notice that `((n),(k)) = ((n),(n-k))`


Hence, `((100),(2)) = ((100),(100 - 2)) = ((100),(98))`


Evaluating  `((100),(2))`  yields:


`((100),(2)) = (100!)/(2!(100-2)!) => ((100),(2)) =  (100!)/(2!(98)!)`


Notice that `100! = 98!*99*100`


`((100),(2)) = (98!*99*100)/(2!(98)!)  =>  ((100),(2)) = (99*100)/(1*2) = 4950`


Hence, evaluating the binomial coefficient yields `((100),(98)) = 4950. `

No comments:

Post a Comment