Sunday, February 21, 2016

`((100),(2))` Find the binomial coefficient.

You need to evaluate the binomial coefficient, using the next formula, such that:


`((n),(k)) = (n!)/(k!(n-k)!)`


Replacing 100 for n and 2 for k yields:


`((100),(2)) = (100!)/(2!(100-2)!) => ((100),(2)) =  (100!)/(2!(98)!) `


Notice that `100! = 98!*99*100 `


`((100),(2)) = (98!*99*100)/(2!(98)!)  =>  ((100),(2)) = (99*100)/(1*2) = 4950`


Hence, evaluating the binomial coefficient yields `((100),(2)) = 4950.`

No comments:

Post a Comment