You need to evaluate the given sum using formulas for the sums of powers of integers, such that:
`sigma_(n=1)^20 (n^3 - n) = sigma_(n=1)^20 n^3 - sigma_(n=1)^20 n`
`sigma_(n=1)^20 n^3 = 1^3 + 2^3 + .... + 20^3`
You need to remember that `sigma_(n=1)^n k^3 = ((n(n+1))/2)^2`
Replacing 20 for n yields:
`sigma_(n=1)^20 n^3 = ((20(20+1))/2)^2`
`sigma_(n=1)^20 n^3 = 100*21^2`
`sigma_(n=1)^20 n = 1 + 2 + ... + 20`
You need to remember that `sigma_(n=1)^n k = ((n(n+1))/2)`
Replacing 20 for n yields:
`sigma_(n=1)^20 n = (20(20+1))/2`
`sigma_(n=1)^20 n = 10*21`
Evaluating the sum, yields:
`sigma_(n=1)^20 (n^3 - n) = 100*21^2 - 10*21`
Factoring out `10*21` yields:
`sigma_(n=1)^20 (n^3 - n) = 10*21*(10*21 - 1)`
`sigma_(n=1)^20 (n^3 - n) = 210*209`
`sigma_(n=1)^20 (n^3 - n) = 43890`
Hence, evaluating the given sum using formulas for the sums of powers of integers, yields `sigma_(n=1)^20 (n^3 - n) = 210*209 = 43890.`
No comments:
Post a Comment